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Practice CS103 Final Exam IV

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you
practice working under time pressure and give you an honest sense of where you stand and
what you need to get some more practice with.

This practice final exam is essentially the final exam from Spring 2015, with one or two questions
swapped out for questions from previous quarter's final exams. The sorts of questions here are rep-
resentative of what you might expect to get on the upcoming final exam, though the point balance
and distribution of problems might be a bit different.

The exam policies are the same for the midterms – closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 49 total points.

Question Points Graders

(1) Induction / 4

(2) First-Order Logic / 5

(3) Sets and Functions / 5

(4) Regular and Context-Free Languages / 16

(5) R and RE Languages  / 15

(6) P and NP Languages  / 4

/ 49
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Problem One: Induction     (4 Points)
If you're hungry, you can make yourself a cheese sandwich by taking two pieces of bread and
putting a slice of cheese between them. If you're really hungry, you can make a cheese metasand-
wich by making two cheese sandwiches and putting a slice of cheese between them. If you're really,
really hungry, you can make a cheese meta-metasandwich by making two cheese metasandwiches
and putting a slice of cheese between them.

Formally, we can define a hierarchy of sandwich variants as follows:

• An order 0 metasandwich is a normal cheese sandwich.

• An  order  n+1  metasandwich consists  of  two order  n metasandwiches  with  a  piece  of
cheese between them.

Determine formulas for the number of pieces of bread and slices of cheese in an order n metasand-
wich, then prove by induction that your formulas are correct. Your formulas should not be recur-
rence relations, by the way – it should be easy to directly evaluate your formulas to see how much
bread and cheese is necessary to make an order n metasandwich.
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Problem Two: First-Order Logic     (5 Points)
(Final Exam, Spring 2015)

Suppose we have the predicates

• Person(p), which states that p is a person, and
• Loves(p, q), which states that p loves q.

Below are a series of five English statements paired with a statement in first-order logic. For each
statement, decide whether the corresponding formula in first-order logic is a correct translation of
the English statement and check the appropriate box. There is no penalty for an incorrect guess.

Everyone loves themselves.
∀p. (Person(p) →
    ∀q. (Loves(p, q) → p = q)
)

     ☐ Correct

     ☐ Incorrect

There are two people that everyone
loves.

∀r. (Person(r) →
    ∃p. (Person(p) ∧
        ∃q. (Person(q) ∧ q ≠ p ∧
            Loves(r, p) ∧ Loves(r, q)
        )
    )
)

     ☐ Correct

     ☐ Incorrect

Love is a transitive relation
over the set of people.

∀p. (Person(p) ∧
    ∀q. (Person(q) ∧
        ∀r. (Person(r) ∧
            (Loves(p, q) ∧ Loves(q, r) →
                Loves(p, r)
            )
        )
    )
)

     ☐ Correct

     ☐ Incorrect

No two people love exactly
the same set of people.

∀p. (Person(p) →
    ∀q. (Person(q) ∧ q ≠ p →
        ∃r. (Person(r) ∧
            (Loves(p, r) ↔ ¬Loves(q, r))
        )
    )
)

     ☐ Correct

     ☐ Incorrect

Someone doesn't love anyone.
¬∀p. (Person(p) →
    ∃q. (Person(q) ∧ Loves(p, q))
)

     ☐ Correct

     ☐ Incorrect
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Problem Three: Sets and Functions     (5 Points)
(Final Exam, Winter 2013)

There can be many functions from one set A to a second set B. This question explores how many
functions of this sort there are.

For any set S, we will denote by 2S the following set:

2S = { f | f : S → {0, 1} }

That is, 2S is the set of all functions whose domain is S and whose codomain is the set {0, 1}.  Note
that 2S does not mean “two raised to the Sth power.” It's just the notation we use to denote the set
of all functions from S to {0, 1}.

Prove that if S is a nonempty set, then |2S| = |℘(S)|. To do so, find a bijection from 2S to ℘(S), then
prove that your function is a bijection. Your proof should work for all sets S, including infinite sets.

You may find the following definition useful: if  f :  A → B and  g :  A → B are functions with the
same domain and the same codomain, then we say that f = g if f(a) = g(a) for all a ∈ A.
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(Extra space for your answer to Problem Three, if you need it.)
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Problem Four: Regular and Context-Free Languages   (16 Points)
Let Σ = {a, b} and let L₁ = { w ∈ Σ* | w does not contain bbb as a substring }.

i. (3 Points) Design a DFA for L₁.

ii. (3 Points) Write a regular expression for L₁.
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(Final Exam, Fall 2014)

Let Σ = {a, b} and consider the following language over Σ:

L₃ = { w ∈ Σ* | w has odd length and its middle character is a }

iii. (5 Points) Prove that L₃ is not a regular language.
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(Final Exam, Fall 2014)

As a reminder, the language L₃ over Σ = {a, b} from the previous page was defined as follows:

L₃ = { w ∈ Σ* | w has odd length and its middle character is a }

You just proved that this language is not regular. However, below is an NFA that purportedly has
language L₃:

q₀ q₁

Σ

a ε q₂

Σ

start   

Here is a line of reasoning that claims that this NFA has language L:

“Intuitively, this NFA will sit in state q₀ following its Σ transition until it nondeter-
ministically guesses that it's about to read the middle a character. When it does, it
transitions to q₁, where it keeps following the Σ transition as long as more characters
are available. Finally, once it's read all the characters of the input, the NFA follows
the ε transition from q₁ to q₂, where the NFA then accepts.”

Of course, this reasoning has to be incorrect, since L₃ is not a regular language.

iv. (2 Points) Without using the fact that L₃ is not a regular language, explain why the above
NFA is not an NFA for the language L₃.
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(Final Exam, Spring 2015)

Let Σ = {a, b} and consider the following language L₅ over Σ:

L = { w ∈ Σ*  |  |w| ≡₃ 0 and all the characters in the first third of w are the same }

Here, aababa ∈ L₅, bbbaaaaaa ∈ L₅, aaa ∈ L₅, and ε ∈ L₅, but abbbbb ∉ L₅ and aaaaa ∉ L₅. (For
convenience, I've underlined the first third of the characters in each string.)

v. (3 Points) Write a context-free grammar for L.



10 / 14

Problem Five: R and RE Languages   (15 Points)
(Final Exam, Spring 2015)

Let Σ = {(, )}. Consider the language L = { w ∈ Σ* | w is a string of balanced parentheses }. For
example, (()) ∈ L, (())(()()) ∈ L, and ε ∈ L, but ))(( ∉ L, ()) ∉ L, and (() ∉ L.

i. (5 Points) Design a TM that is a decider for the language L. Please draw out an actual TM
consisting of states and transitions rather than providing a high-level description of the TM.
No justification is necessary.

Some hints:

• Our solution doesn't use very many states. If you find yourself drawing out a huge TM,
you might want to reevaluate your solution.

• Rather than searching for an open parenthesis and trying to find the close parenthesis
that matches it, instead search for a close parenthesis and work backwards to find the
nearest open parenthesis.

• Remember that if a state in a TM has no transition defined for a particular character in
the tape alphabet, the TM will automatically reject if it reads that character in that
state.
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(Final Exam, Spring 2015)

Although we typically haven't treated the class RE as a set, it is indeed a set of languages, so we
can speak of subsets of the RE languages.

Let S ⊆ RE be an arbitrary subset of the RE languages where Ø ∈ S and Σ* ∉ S. We can then de-
fine a new language LS as follows:

LS = { ⟨M⟩ | M is a TM and ℒ(M) ∈ S }

In other words, LS is the set of all TMs whose language is one of the languages included in set S.

ii. (5 Points) Prove that LS is not decidable. As a hint, think about the following self-referen-
tial program:

  int main() {
      string me = mySource();
                string input = getInput();

    if (isInLS(me)) {
        accept();
    } else {
        reject();
    }
}
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(More space for Problem 5.ii, if you need it)
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(Final Exam, Spring 2015)

iii. (5 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of seven numbered languages. For
each of those languages, draw where in the Venn diagram that language belongs. As an ex-
ample, we've indicated where Language 1 and Language 2 should go. No proofs or justifi-
cations are necessary, and there is no penalty for an incorrect guess.

RER

ALL

1

2

1. Σ*

2. LD

3. { ⟨D, w⟩ | D is a DFA and D does not accept w }

4. { ⟨R, w⟩ | R is a regular expression and R does not match w }

5. { ⟨M, w⟩ | M is a TM and M does not accept w }

6. { ⟨M⟩ | M is a TM and M accepts ⟨M⟩ }

7. { ⟨M⟩ | M is a TM and there is no verifier for ℒ(M) }
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Problem Six: P and NP Languages        (4 Points)
(Final exam, Fall 2011)

Suppose that there is a language L ∈ NP where L ∉ P. Prove that in this case, no NP-complete lan-
guage can be decided in polynomial time.


